Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(3): 75, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453705

ABSTRACT

KEY MESSAGE: We validated the efficiency of genomic predictions calibrated on sparse factorial training sets to predict the next generation of hybrids and tested different strategies for updating predictions along generations. Genomic selection offers new prospects for revisiting hybrid breeding schemes by replacing extensive phenotyping of individuals with genomic predictions. Finding the ideal design for training genomic prediction models is still an open question. Previous studies have shown promising predictive abilities using sparse factorial instead of tester-based training sets to predict single-cross hybrids from the same generation. This study aims to further investigate the use of factorials and their optimization to predict line general combining abilities (GCAs) and hybrid values across breeding cycles. It relies on two breeding cycles of a maize reciprocal genomic selection scheme involving multiparental connected reciprocal populations from flint and dent complementary heterotic groups selected for silage performances. Selection based on genomic predictions trained on a factorial design resulted in a significant genetic gain for dry matter yield in the new generation. Results confirmed the efficiency of sparse factorial training sets to predict candidate line GCAs and hybrid values across breeding cycles. Compared to a previous study based on the first generation, the advantage of factorial over tester training sets appeared lower across generations. Updating factorial training sets by adding single-cross hybrids between selected lines from the previous generation or a random subset of hybrids from the new generation both improved predictive abilities. The CDmean criterion helped determine the set of single-crosses to phenotype to update the training set efficiently. Our results validated the efficiency of sparse factorial designs for calibrating hybrid genomic prediction experimentally and showed the benefit of updating it along generations.


Subject(s)
Hybridization, Genetic , Zea mays , Genomics/methods , Plant Breeding , Silage , Zea mays/genetics
2.
Theor Appl Genet ; 137(1): 19, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214870

ABSTRACT

KEY MESSAGE: Implementing a collaborative pre-breeding multi-parental population efficiently identifies promising donor x elite pairs to enrich the flint maize elite germplasm. Genetic diversity is crucial for maintaining genetic gains and ensuring breeding programs' long-term success. In a closed breeding program, selection inevitably leads to a loss of genetic diversity. While managing diversity can delay this loss, introducing external sources of diversity is necessary to bring back favorable genetic variation. Genetic resources exhibit greater diversity than elite materials, but their lower performance levels hinder their use. This is the case for European flint maize, for which elite germplasm has incorporated only a limited portion of the diversity available in landraces. To enrich the diversity of this elite genetic pool, we established an original cooperative maize bridging population that involves crosses between private elite materials and diversity donors to create improved genotypes that will facilitate the incorporation of original favorable variations. Twenty donor × elite BC1S2 families were created and phenotyped for hybrid value for yield related traits. Crosses showed contrasted means and variances and therefore contrasted potential in terms of selection as measured by their usefulness criterion (UC). Average expected mean performance gain over the initial elite material was 5%. The most promising donor for each elite line was identified. Results also suggest that one more generation, i.e., 3 in total, of crossing to the elite is required to fully exploit the potential of a donor. Altogether, our results support the usefulness of incorporating genetic resources into elite flint maize. They call for further effort to create fixed diversity donors and identify those most suitable for each elite program.


Subject(s)
Plant Breeding , Zea mays , Humans , Zea mays/genetics , Phenotype , Genotype , Genetic Variation
3.
Theor Appl Genet ; 136(11): 219, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37816986

ABSTRACT

KEY MESSAGE: An original GWAS model integrating the ancestry of alleles was proposed and allowed the detection of background specific additive and dominance QTLs involved in heterotic group complementarity and hybrid performance. Maize genetic diversity is structured into genetic groups selected and improved relative to each other. This process increases group complementarity and differentiation over time and ensures that the hybrids produced from inter-group crosses exhibit high performances and heterosis. To identify loci involved in hybrid performance and heterotic group complementarity, we introduced an original association study model that disentangles allelic effects from the heterotic group origin of the alleles and compared it with a conventional additive/dominance model. This new model was applied on a factorial between Dent and Flint lines and a diallel between Dent-Flint admixed lines with two different layers of analysis: within each environment and in a multiple-environment context. We identified several strong additive QTLs for all traits, including some well-known additive QTLs for flowering time (in the region of Vgt1/2 on chromosome 8). Yield trait displayed significant non-additive effects in the diallel panel. Most of the detected Yield QTLs exhibited overdominance or, more likely, pseudo-overdominance effects. Apparent overdominance at these QTLs contributed to a part of the genetic group complementarity. The comparison between environments revealed a higher stability of additive QTL effects than non-additive ones. Several QTLs showed variations of effects according to the local heterotic group origin. We also revealed large chromosomic regions that display genetic group origin effects. Altogether, our results illustrate how admixed panels combined with dedicated GWAS modeling allow the identification of new QTLs that could not be revealed by a classical hybrid panel analyzed with traditional modeling.


Subject(s)
Hybrid Vigor , Zea mays , Chromosome Mapping/methods , Zea mays/genetics , Genome-Wide Association Study , Quantitative Trait Loci , Phenotype
4.
Plant Biotechnol J ; 21(6): 1123-1139, 2023 06.
Article in English | MEDLINE | ID: mdl-36740649

ABSTRACT

Landraces, that is, traditional varieties, have a large diversity that is underexploited in modern breeding. A novel DNA pooling strategy was implemented to identify promising landraces and genomic regions to enlarge the genetic diversity of modern varieties. As proof of concept, DNA pools from 156 American and European maize landraces representing 2340 individuals were genotyped with an SNP array to assess their genome-wide diversity. They were compared to elite cultivars produced across the 20th century, represented by 327 inbred lines. Detection of selective footprints between landraces of different geographic origin identified genes involved in environmental adaptation (flowering times, growth) and tolerance to abiotic and biotic stress (drought, cold, salinity). Promising landraces were identified by developing two novel indicators that estimate their contribution to the genome of inbred lines: (i) a modified Roger's distance standardized by gene diversity and (ii) the assignation of lines to landraces using supervised analysis. It showed that most landraces do not have closely related lines and that only 10 landraces, including famous landraces as Reid's Yellow Dent, Lancaster Surecrop and Lacaune, cumulated half of the total contribution to inbred lines. Comparison of ancestral lines directly derived from landraces with lines from more advanced breeding cycles showed a decrease in the number of landraces with a large contribution. New inbred lines derived from landraces with limited contributions enriched more the haplotype diversity of reference inbred lines than those with a high contribution. Our approach opens an avenue for the identification of promising landraces for pre-breeding.


Subject(s)
Genomics , Plant Breeding , Genotype , Genome, Plant/genetics , DNA , Genetic Variation/genetics , Zea mays/genetics
5.
Nat Commun ; 13(1): 3225, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680899

ABSTRACT

Combined phenomic and genomic approaches are required to evaluate the margin of progress of breeding strategies. Here, we analyze 65 years of genetic progress in maize yield, which was similar (101 kg ha-1 year-1) across most frequent environmental scenarios in the European growing area. Yield gains were linked to physiologically simple traits (plant phenology and architecture) which indirectly affected reproductive development and light interception in all studied environments, marked by significant genomic signatures of selection. Conversely, studied physiological processes involved in stress adaptation remained phenotypically unchanged (e.g. stomatal conductance and growth sensitivity to drought) and showed no signatures of selection. By selecting for yield, breeders indirectly selected traits with stable effects on yield, but not physiological traits whose effects on yield can be positive or negative depending on environmental conditions. Because yield stability under climate change is desirable, novel breeding strategies may be needed for exploiting alleles governing physiological adaptive traits.


Subject(s)
Plant Breeding , Zea mays , Alleles , Droughts , Phenotype , Zea mays/genetics
6.
PLoS One ; 16(2): e0238334, 2021.
Article in English | MEDLINE | ID: mdl-33524023

ABSTRACT

From the 17th century until the arrival of hybrids in 1960s, maize landraces were cultivated in the South-West of France (SWF), a traditional region for maize cultivation. A set of landraces were collected in this area between the 1950s and 1980s and were then conserved ex situ in a germplam collection. Previous studies using molecular markers on approx. twenty landraces from this region suggested that they belonged to a Pyrenees-Galicia Flint genetic group and originated from hybridizations between Caribbean and Northern Flint germplasms introduced to Europe. In this study, we assessed the structure and genetic diversity of 194 SWF maize landraces to better elucidate their origin, using a 50K SNP array and a bulk DNA approach. We identified two weakly differentiated genetic groups, one in the Western part and the other in the Eastern part of the studied region. We highlighted the existence of a longitudinal gradient along the SWF area that was probably maintained through the interplay between genetic drifts and restricted gene flows. The contact zone between the two groups observed near the Garonne valley may be the result of these evolutionnary forces. We found in landraces from the East part of the region significant cases of admixture between landraces from the Northern Flint group and landraces from either the Caribbean, Andean or Italian groups. We then assumed that SWF landraces had a multiple origin with a predonderance of Northern Flint germplasm for the two SWF groups, notably for the East part.


Subject(s)
Zea mays/genetics , Evolution, Molecular , France , Gene Flow , Genetic Drift , Genetic Variation , Genotype , Hybridization, Genetic , Microsatellite Repeats , Polymorphism, Single Nucleotide , Seeds/genetics
7.
PLoS Genet ; 16(3): e1008241, 2020 03.
Article in English | MEDLINE | ID: mdl-32130208

ABSTRACT

When handling a structured population in association mapping, group-specific allele effects may be observed at quantitative trait loci (QTLs) for several reasons: (i) a different linkage disequilibrium (LD) between SNPs and QTLs across groups, (ii) group-specific genetic mutations in QTL regions, and/or (iii) epistatic interactions between QTLs and other loci that have differentiated allele frequencies between groups. We present here a new genome-wide association (GWAS) approach to identify QTLs exhibiting such group-specific allele effects. We developed genetic materials including admixed progeny from different genetic groups with known genome-wide ancestries (local admixture). A dedicated statistical methodology was developed to analyze pure and admixed individuals jointly, allowing one to disentangle the factors causing the heterogeneity of allele effects across groups. This approach was applied to maize by developing an inbred "Flint-Dent" panel including admixed individuals that was evaluated for flowering time. Several associations were detected revealing a wide range of configurations of allele effects, both at known flowering QTLs (Vgt1, Vgt2 and Vgt3) and new loci. We found several QTLs whose effect depended on the group ancestry of alleles while others interacted with the genetic background. Our GWAS approach provides useful information on the stability of QTL effects across genetic groups and can be applied to a wide range of species.


Subject(s)
Epistasis, Genetic/genetics , Flowers/genetics , Quantitative Trait Loci/genetics , Zea mays/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant/genetics , Gene Frequency/genetics , Genetic Background , Genome, Plant/genetics , Genome-Wide Association Study/methods , Genotype , Linkage Disequilibrium/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
8.
Front Plant Sci ; 11: 568699, 2020.
Article in English | MEDLINE | ID: mdl-33488638

ABSTRACT

Genebanks harbor original landraces carrying many original favorable alleles for mitigating biotic and abiotic stresses. Their genetic diversity remains, however, poorly characterized due to their large within genetic diversity. We developed a high-throughput, cheap and labor saving DNA bulk approach based on single-nucleotide polymorphism (SNP) Illumina Infinium HD array to genotype landraces. Samples were gathered for each landrace by mixing equal weights from young leaves, from which DNA was extracted. We then estimated allelic frequencies in each DNA bulk based on fluorescent intensity ratio (FIR) between two alleles at each SNP using a two step-approach. We first tested either whether the DNA bulk was monomorphic or polymorphic according to the two FIR distributions of individuals homozygous for allele A or B, respectively. If the DNA bulk was polymorphic, we estimated its allelic frequency by using a predictive equation calibrated on FIR from DNA bulks with known allelic frequencies. Our approach: (i) gives accurate allelic frequency estimations that are highly reproducible across laboratories, (ii) protects against false detection of allele fixation within landraces. We estimated allelic frequencies of 23,412 SNPs in 156 landraces representing American and European maize diversity. Modified Roger's genetic Distance between 156 landraces estimated from 23,412 SNPs and 17 simple sequence repeats using the same DNA bulks were highly correlated, suggesting that the ascertainment bias is low. Our approach is affordable, easy to implement and does not require specific bioinformatics support and laboratory equipment, and therefore should be highly relevant for large-scale characterization of genebanks for a wide range of species.

9.
BMC Genomics ; 20(1): 848, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31722668

ABSTRACT

BACKGROUND: Insertions/deletions (InDels) and more specifically presence/absence variations (PAVs) are pervasive in several species and have strong functional and phenotypic effect by removing or drastically modifying genes. Genotyping of such variants on large panels remains poorly addressed, while necessary for approaches such as association mapping or genomic selection. RESULTS: We have developed, as a proof of concept, a new high-throughput and affordable approach to genotype InDels. We first identified 141,000 InDels by aligning reads from the B73 line against the genome of three temperate maize inbred lines (F2, PH207, and C103) and reciprocally. Next, we designed an Affymetrix® Axiom® array to target these InDels, with a combination of probes selected at breakpoint sites (13%) or within the InDel sequence, either at polymorphic (25%) or non-polymorphic sites (63%) sites. The final array design is composed of 662,772 probes and targets 105,927 InDels, including PAVs ranging from 35 bp to 129kbp. After Affymetrix® quality control, we successfully genotyped 86,648 polymorphic InDels (82% of all InDels interrogated by the array) on 445 maize DNA samples with 422,369 probes. Genotyping InDels using this approach produced a highly reliable dataset, with low genotyping error (~ 3%), high call rate (~ 98%), and high reproducibility (> 95%). This reliability can be further increased by combining genotyping of several probes calling the same InDels (< 0.1% error rate and > 99.9% of call rate for 5 probes). This "proof of concept" tool was used to estimate the kinship matrix between 362 maize lines with 57,824 polymorphic InDels. This InDels kinship matrix was highly correlated with kinship estimated using SNPs from Illumina 50 K SNP arrays. CONCLUSIONS: We efficiently genotyped thousands of small to large InDels on a sizeable number of individuals using a new Affymetrix® Axiom® array. This powerful approach opens the way to studying the contribution of InDels to trait variation and heterosis in maize. The approach is easily extendable to other species and should contribute to decipher the biological impact of InDels at a larger scale.


Subject(s)
Genome, Plant , Genotyping Techniques/methods , INDEL Mutation , Oligonucleotide Array Sequence Analysis , Zea mays/genetics , High-Throughput Nucleotide Sequencing , Nucleic Acid Probes
10.
BMC Plant Biol ; 19(1): 318, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31311506

ABSTRACT

BACKGROUND: Single Nucleotide Polymorphism (SNP) array and re-sequencing technologies have different properties (e.g. calling rate, minor allele frequency profile) and drawbacks (e.g. ascertainment bias). This lead us to study their complementarity and the consequences of using them separately or combined in diversity analyses and Genome-Wide Association Studies (GWAS). We performed GWAS on three traits (grain yield, plant height and male flowering time) measured in 22 environments on a panel of 247 F1 hybrids obtained by crossing 247 diverse dent maize inbred lines with a same flint line. The 247 lines were genotyped using three genotyping technologies (Genotyping-By-Sequencing, Illumina Infinium 50 K and Affymetrix Axiom 600 K arrays). RESULTS: The effects of ascertainment bias of the 50 K and 600 K arrays were negligible for deciphering global genetic trends of diversity and for estimating relatedness in this panel. We developed an original approach based on linkage disequilibrium (LD) extent in order to determine whether SNPs significantly associated with a trait and that are physically linked should be considered as a single Quantitative Trait Locus (QTL) or several independent QTLs. Using this approach, we showed that the combination of the three technologies, which have different SNP distributions and densities, allowed us to detect more QTLs (gain in power) and potentially refine the localization of the causal polymorphisms (gain in resolution). CONCLUSIONS: Conceptually different technologies are complementary for detecting QTLs by tagging different haplotypes in association studies. Considering LD, marker density and the combination of different technologies (SNP-arrays and re-sequencing), the genotypic data available were most likely enough to well represent polymorphisms in the centromeric regions, whereas using more markers would be beneficial for telomeric regions.


Subject(s)
Genome-Wide Association Study/methods , Genotyping Techniques , Haplotypes , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays/genetics , Alleles , Biodiversity , Chromosomes, Plant , Genetic Markers , Genome, Plant , Linkage Disequilibrium , Zea mays/growth & development
11.
Genetics ; 207(3): 1167-1180, 2017 11.
Article in English | MEDLINE | ID: mdl-28971957

ABSTRACT

Several plant and animal species of agricultural importance are commercialized as hybrids to take advantage of the heterosis phenomenon. Understanding the genetic architecture of hybrid performances is therefore of key importance. We developed two multiparental maize (Zea mays L.) populations, each corresponding to an important heterotic group (dent or flint) and comprised of six connected biparental segregating populations of inbred lines (802 and 822 lines for each group, respectively) issued from four founder lines. Instead of using "testers" to evaluate their hybrid values, segregating lines were crossed according to an incomplete factorial design to produce 951 dent-flint hybrids, evaluated for four biomass production traits in eight environments. QTL detection was carried out for the general-combining-ability (GCA) and specific-combining-ability (SCA) components of hybrid value, considering allelic effects transmitted from each founder line. In total, 42 QTL were detected across traits. We detected mostly QTL affecting GCA, 31% (41% for dry matter yield) of which also had mild effects on SCA. The small impact of dominant effects is consistent with the known differentiation between the dent and flint heterotic groups and the small percentage of hybrid variance due to SCA observed in our design (∼20% for the different traits). Furthermore, most (80%) of GCA QTL were segregating in only one of the two heterotic groups. Relative to tester-based designs, use of hybrids between two multiparental populations appears highly cost efficient to detect QTL in two heterotic groups simultaneously. This presents new prospects for selecting superior hybrid combinations with markers.


Subject(s)
Hybridization, Genetic , Models, Genetic , Quantitative Trait Loci , Zea mays/genetics , Biomass , Genes, Dominant , Genetic Variation , Inbreeding , Quantitative Trait, Heritable , Zea mays/growth & development
12.
G3 (Bethesda) ; 7(11): 3649-3657, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28963164

ABSTRACT

Identification of quantitative trait loci (QTL) involved in the variation of hybrid value is of key importance for cross-pollinated species such as maize (Zea mays L.). In a companion paper, we illustrated a new QTL mapping population design involving a factorial mating between two multiparental segregating populations. Six biparental line populations were developed from four founder lines in the Dent and Flint heterotic groups. They were crossed to produce 951 hybrids and evaluated for silage performances. Previously, a linkage analysis (LA) model that assumes each founder line carries a different allele was used to detect QTL involved in General and Specific Combining Abilities (GCA and SCA, respectively) of hybrid value. This previously introduced model requires the estimation of numerous effects per locus, potentially affecting QTL detection power. Using the same design, we compared this "Founder alleles" model to two more parsimonious models, which assume that (i) identity in state at SNP alleles from the same heterotic group implies identity by descent (IBD) at linked QTL ("SNP within-group" model) or (ii) identity in state implies IBD, regardless of population origin of the alleles ("Hybrid genotype" model). This last model assumes biallelic QTL with equal effects in each group. It detected more QTL on average than the two other models but explained lower percentages of variance. The "SNP within-group" model appeared to be a good compromise between the two other models. These results confirm the divergence between the Dent and Flint groups. They also illustrate the need to adapt the QTL detection model to the complexity of the allelic variation, which depends on the trait, the QTL, and the divergence between the heterotic groups.


Subject(s)
Biomass , Hybridization, Genetic , Plant Breeding/methods , Quantitative Trait Loci , Zea mays/genetics , Chromosome Mapping/methods , Genetic Linkage , Polymorphism, Single Nucleotide , Zea mays/growth & development
13.
Theor Appl Genet ; 130(10): 2165-2189, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28780587

ABSTRACT

KEY MESSAGE: Genotyping by sequencing is suitable for analysis of global diversity in maize. We showed the distinctiveness of flint maize inbred lines of interest to enrich the diversity of breeding programs. Genotyping-by-sequencing (GBS) is a highly cost-effective procedure that permits the analysis of large collections of inbred lines. We used it to characterize diversity in 1191 maize flint inbred lines from the INRA collection, the European Cornfed association panel, and lines recently derived from landraces. We analyzed the properties of GBS data obtained with different imputation methods, through comparison with a 50 K SNP array. We identified seven ancestral groups within the Flint collection (dent, Northern flint, Italy, Pyrenees-Galicia, Argentina, Lacaune, Popcorn) in agreement with breeding knowledge. Analysis highlighted many crosses between different origins and the improvement of flint germplasm with dent germplasm. We performed association studies on different agronomic traits, revealing SNPs associated with cob color, kernel color, and male flowering time variation. We compared the diversity of both our collection and the USDA collection which has been previously analyzed by GBS. The population structure of the 4001 inbred lines confirmed the influence of the historical inbred lines (B73, A632, Oh43, Mo17, W182E, PH207, and Wf9) within the dent group. It showed distinctly different tropical and popcorn groups, a sweet-Northern flint group and a flint group sub-structured in Italian and European flint (Pyrenees-Galicia and Lacaune) groups. Interestingly, we identified several selective sweeps between dent, flint, and tropical inbred lines that co-localized with SNPs associated with flowering time variation. The joint analysis of collections by GBS offers opportunities for a global diversity analysis of maize inbred lines.


Subject(s)
Genetic Variation , Genetics, Population , Plant Breeding , Zea mays/genetics , Europe , Genotype , Inbreeding , Phenotype , Polymorphism, Single Nucleotide , United States , United States Department of Agriculture
14.
Genetics ; 197(1): 375-87, 2014 May.
Article in English | MEDLINE | ID: mdl-24532779

ABSTRACT

Association mapping has permitted the discovery of major QTL in many species. It can be applied to existing populations and, as a consequence, it is generally necessary to take into account structure and relatedness among individuals in the statistical model to control false positives. We analytically studied power in association studies by computing noncentrality parameter of the tests and its relationship with parameters characterizing diversity (genetic differentiation between groups and allele frequencies) and kinship between individuals. Investigation of three different maize diversity panels genotyped with the 50k SNPs array highlighted contrasted average power among panels and revealed gaps of power of classical mixed models in regions with high linkage disequilibrium (LD). These gaps could be related to the fact that markers are used for both testing association and estimating relatedness. We thus considered two alternative approaches to estimating the kinship matrix to recover power in regions of high LD. In the first one, we estimated the kinship with all the markers that are not located on the same chromosome than the tested SNP. In the second one, correlation between markers was taken into account to weight the contribution of each marker to the kinship. Simulations revealed that these two approaches were efficient to control false positives and were more powerful than classical models.


Subject(s)
Chromosome Mapping/methods , Linkage Disequilibrium , Chromosomes, Plant/genetics , Genomics , Genotyping Techniques , Phylogeny , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Zea mays/genetics
15.
PLoS One ; 8(8): e71377, 2013.
Article in English | MEDLINE | ID: mdl-24023610

ABSTRACT

The migration of maize from tropical to temperate climates was accompanied by a dramatic evolution in flowering time. To gain insight into the genetic architecture of this adaptive trait, we conducted a 50K SNP-based genome-wide association and diversity investigation on a panel of tropical and temperate American and European representatives. Eighteen genomic regions were associated with flowering time. The number of early alleles cumulated along these regions was highly correlated with flowering time. Polymorphism in the vicinity of the ZCN8 gene, which is the closest maize homologue to Arabidopsis major flowering time (FT) gene, had the strongest effect. This polymorphism is in the vicinity of the causal factor of Vgt2 QTL. Diversity was lower, whereas differentiation and LD were higher for associated loci compared to the rest of the genome, which is consistent with selection acting on flowering time during maize migration. Selection tests also revealed supplementary loci that were highly differentiated among groups and not associated with flowering time in our panel, whereas they were in other linkage-based studies. This suggests that allele fixation led to a lack of statistical power when structure and relatedness were taken into account in a linear mixed model. Complementary designs and analysis methods are necessary to unravel the architecture of complex traits. Based on linkage disequilibrium (LD) estimates corrected for population structure, we concluded that the number of SNPs genotyped should be at least doubled to capture all QTLs contributing to the genetic architecture of polygenic traits in this panel. These results show that maize flowering time is controlled by numerous QTLs of small additive effect and that strong polygenic selection occurred under cool climatic conditions. They should contribute to more efficient genomic predictions of flowering time and facilitate the dissemination of diverse maize genetic resources under a wide range of environments.


Subject(s)
Adaptation, Physiological/genetics , Climate , Ecosystem , Genetic Loci/genetics , Genetic Variation , Genome-Wide Association Study , Zea mays/genetics , Chromosomes, Plant/genetics , Flowers/genetics , Flowers/physiology , Gene Frequency/genetics , Genetic Markers , Genome, Plant/genetics , Genotyping Techniques , Linkage Disequilibrium/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Selection, Genetic
16.
Theor Appl Genet ; 124(8): 1521-37, 2012 May.
Article in English | MEDLINE | ID: mdl-22350086

ABSTRACT

Transposable elements are the major component of the maize genome and presumably highly polymorphic yet they have not been used in population genetics and association analyses. Using the Transposon Display method, we isolated and converted into PCR-based markers 33 Miniature Inverted Repeat Transposable Elements (MITE) polymorphic insertions. These polymorphisms were genotyped on a population-based sample of 26 American landraces for a total of 322 plants. Genetic diversity was high and partitioned within and among landraces. The genetic groups identified using Bayesian clustering were in agreement with published data based on SNPs and SSRs, indicating that MITE polymorphisms reflect maize genetic history. To explore the contribution of MITEs to phenotypic variation, we undertook an association mapping approach in a panel of 367 maize lines phenotyped for 26 traits. We found a highly significant association between the marker ZmV1-9, on chromosome 1, and male flowering time. The variance explained by this association is consistent with a flowering delay of +123 degree-days. This MITE insertion is located at only 289 nucleotides from the 3' end of a Cytochrome P450-like gene, a region that was never identified in previous association mapping or QTL surveys. Interestingly, we found (i) a non-synonymous mutation located in the exon 2 of the gene in strong linkage disequilibrium with the MITE polymorphism, and (ii) a perfect sequence homology between the MITE sequence and a maize siRNA that could therefore potentially interfere with the expression of the Cytochrome P450-like gene. Those two observations among others offer exciting perspectives to validate functionally the role of this region on phenotypic variation.


Subject(s)
DNA Transposable Elements , Genetic Variation , Polymorphism, Genetic/genetics , Zea mays/genetics , Alleles , Bayes Theorem , Crosses, Genetic , Cytochrome P-450 Enzyme System/genetics , Europe , Genetic Markers , Genotype , Heterozygote , Models, Genetic , Models, Statistical , Phenotype , Phylogeny , Polymerase Chain Reaction/methods , United States
17.
Theor Appl Genet ; 123(6): 907-26, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21761163

ABSTRACT

Earliness is very important for the adaptation of wheat to environmental conditions and the achievement of high grain yield. A detailed knowledge of key genetic components of the life cycle would enable an easier control by the breeders. The objective of the study was to investigate the effect of candidate genes on flowering time. Using a collection of hexaploid wheat composed of 235 lines from diverse geographical origins, we conducted an association study for six candidate genes for flowering time and its components (vernalization sensitivity and earliness per se). The effect on the variation of earliness components of polymorphisms within the copies of each gene was tested in ANOVA models accounting for the underlying genetic structure. The collection was structured in five groups that minimized the residual covariance. Vernalization requirement and lateness tend to increase according to the mean latitude of each group. Heading date for an autumnal sowing was mainly determined by the earliness per se. Except for the Constans (CO) gene orthologous of the barley HvCO3, all gene polymorphisms had a significant impact on earliness components. The three traits used to quantify vernalization requirement were primarily associated with polymorphisms at Vrn-1 and then at Vrn-3 and Luminidependens (LD) genes. We found a good correspondence between spring/winter types and genotypes at the three homeologous copies of Vrn-1. Earliness per se was mainly explained by polymorphisms at Vrn-3 and to a lesser extent at Vrn-1, Hd-1 and Gigantea (GI) genes. Vernalization requirement and earliness as a function of geographical origin, as well as the possible role of the breeding practices in the geographical distribution of the alleles and the hypothetical adaptive value of the candidate genes, are discussed.


Subject(s)
Flowers/genetics , Flowers/physiology , Triticum/genetics , Triticum/physiology , Alleles , Base Sequence , Chromosome Mapping , Gene Expression Regulation, Plant , Genes, Plant , Genetic Association Studies , Genetic Variation , Genotype , Haplotypes , Linkage Disequilibrium , Multigene Family , Phenotype , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sequence Alignment , Sequence Analysis, DNA
18.
Genetics ; 186(1): 395-404, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20592258

ABSTRACT

Using advanced intermated populations has been proposed as a way to increase the accuracy of mapping experiments. An F(3) population of 300 lines and an advanced intermated F(3) population of 322 lines, both derived from the same parental maize inbred lines, were jointly evaluated for dry grain yield (DGY), grain moisture (GM), and silking date (SD). Genetic variance for dry grain yield was significantly lower in the intermated population compared to the F(3) population. The confidence interval around a QTL was on average 2.31 times smaller in the intermated population compared to the F(3) population. One controversy surrounding QTL mapping is whether QTL identified in fact represent single loci. This study identifies two distinct loci for dry grain yield in the intermated population in coupling phase, while the F(3) identifies only a single locus. Surprisingly, fewer QTL were detected in the intermated population than the F(3) (21 vs. 30) and <50% of the detected QTL were shared among the two populations. Cross-validation showed that selection bias was more important in the intermated population than in the F(3) and that each detected QTL explained a lower percentage of the variance. This finding supports the hypothesis that QTL detected in conventional populations correspond mainly to clusters of linked QTL. The actual number of QTL involved in the genetic architecture of complex traits may be substantially larger, with effect sizes substantially smaller than in conventional populations.


Subject(s)
Edible Grain/growth & development , Edible Grain/genetics , Hybridization, Genetic/genetics , Zea mays/growth & development , Zea mays/genetics , Chromosome Mapping , Edible Grain/metabolism , Genotype , Phenotype , Quantitative Trait Loci/genetics , Reproducibility of Results , Water/metabolism , Zea mays/metabolism
19.
Genetics ; 183(4): 1555-63, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19822732

ABSTRACT

Flowering time is a major adaptive trait in plants and an important selection criterion for crop species. In maize, however, little is known about its molecular basis. In this study, we report the fine mapping and characterization of a major quantitative trait locus located on maize chromosome 10, which regulates flowering time through photoperiod sensitivity. This study was performed in near-isogenic material derived from a cross between the day-neutral European flint inbred line FV286 and the tropical short-day inbred line FV331. Recombinant individuals were identified among a large segregating population and their progenies were scored for flowering time. Combined genotypic characterization led to delimit the QTL to an interval of 170 kb and highlighted an unbalanced recombination pattern. Two bacterial artificial chromosomes (BACs) covering the region were analyzed to identify putative candidate genes, and synteny with rice, sorghum, and brachypodium was investigated. A gene encoding a CCT domain protein homologous to the rice Ghd7 heading date regulator was identified, but its causative role was not demonstrated and deserves further analyses. Finally, an association study showed a strong level of linkage disequilibrium over the region and highlighted haplotypes that could provide useful information for the exploitation of genetic resources and marker-assisted selection in maize.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Flowers/genetics , Haplotypes , Quantitative Trait Loci , Zea mays/genetics , Genes, Plant/genetics , Genetic Variation , Genome-Wide Association Study , Molecular Sequence Data , Reproducibility of Results , Synteny , Time Factors
20.
Genetics ; 178(4): 2433-7, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18430961

ABSTRACT

An association study conducted on 375 maize inbred lines indicates a strong relationship between Vgt1 polymorphisms and flowering time, extending former quantitative trait loci (QTL) mapping results. Analysis of allele frequencies in a landrace collection supports a key role of Vgt1 in maize altilatitudinal adaptation.


Subject(s)
Adaptation, Physiological , Chromosome Mapping , Flowers/genetics , Flowers/physiology , Plant Proteins/genetics , Quantitative Trait Loci/genetics , Zea mays/genetics , Zea mays/physiology , Ecosystem , Gene Frequency , Genes, Plant/genetics , Genotype , Geography , Linkage Disequilibrium , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...